当前位置 > 主页 > 合作机会 > 数据对比



3D FloTrix细胞扩增套装折页-2.jpg



参考文献

[1] Liu, L., You, Z., Yu, H., Zhou, L., Zhao, H., Yan, X., ... & Xia, T. (2017). Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in

liver fibrosis. Nature materials, 16(12), 1252.【IF: 38.88】

[2] Jiang, S., Lyu, C., Zhao, P., Li, W., Kong, W., Huang, C., ... & Du, Y. (2019). Cryoprotectant enables structural control of porous scaffolds for exploration of cellular

mechano-responsiveness in 3D. Nature communications, 10(1), 1-14.【IF: 11.87】

[3] Li, Y., Liu, W., Liu, F., Zeng, Y., Zuo, S., Feng, S., ... & Bai, J. (2014). Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia.

Proceedings of the National Academy of Sciences, 111(37), 13511-13516.【IF: 10.600】

[4] Qi, C., Li, Y., Badger, P., Yu, H., You, Z., Yan, X., ... & Huang, C. (2017). Pathology-targeted cell delivery via injectable micro-scaffold capsule mediated by endogenous

TGase. Biomaterials, 126, 1-9.【IF: 10.27】

[5] Zeng, Y., Chen, C., Liu, W., Fu, Q., Han, Z., Li, Y., ... & Wang, D. (2015). Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak

proof delivery and alleviation of canine disc degeneration. Biomaterials, 59, 53-65.【IF: 10.27】

[6] Zhu, L., Fan, X., Wang, B., Liu, L., Yan, X., Zhou, L., ... & Du, Y. (2017). Biomechanically primed liver microtumor array as a high-throughput mechanopharmacological

screening platform for stroma-reprogrammed combinatorial therapy. Biomaterials, 124, 12-24.【IF: 10.27】

[7] Yan, X., Zhou, L., Wu, Z., Wang, X., Chen, X., Yang, F., ... & Wang, J. (2019). High throughput scaffold-based 3D micro-tumor array for efficient drug screening and

chemosensitivity testing. Biomaterials, 198, 167-179.【IF: 10.27】

[8] Wang, J., Chen, F., Liu, L., Qi, C., Wang, B., Yan, X., ... & Du, Y. (2016). Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity

evaluation. Biomaterials, 91, 11-22.【IF: 10.27】

[9] Chen, H., Zeng, Y., Liu, W., Zhao, S., Wu, J., & Du, Y. (2013). Multifaceted applications of nanomaterials in cell engineering and therapy. Biotechnology advances, 31(5),

638-653. 【IF: 8.905】

[10] Yao, R., Wang, J., Li, X., Jung Jung, D., Qi, H., Kee, K. K., & Du, Y. (2014). Hepatic differentiation of human embryonic stem cells as microscaled multilayered colonies

leading to enhanced homogeneity and maturation. Small, 10(21), 4311-4323.【IF: 8.368】

[11] Liu, W., Li, Y., Feng, S., Ning, J., Wang, J., Gou, M., ... & Du, Y. (2014). Magnetically controllable 3D microtissues based on magnetic microcryogels. Lab on a Chip,

14(15), 2614-2625.【IF: 6.91】

[12] Yan, X., Wang, J., Zhu, L., Lowrey, J. J., Zhang, Y., Hou, W., ... & Du, Y. (2015). A ready-to-use, versatile, multiplex-able three-dimensional scaffold-based immunoassay

chip for high throughput hepatotoxicity evaluation. Lab on a Chip, 15(12), 2634-2646.【IF: 6.91】

[13] Li, X., Zhang, X., Zhao, S., Wang, J., Liu, G., & Du, Y. (2014). Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop

equipment. Lab on a Chip, 14(3), 471-481.【IF: 6.91】

[14] Zhao, H., Zhou, L., Zhang, Q., Zhou, X., Zhang, Y., Chen, H., & Du, Y. (2015). Bi-content micro-collagen chip provides contractility-based biomechanical readout for

phenotypic drug screening with expanded and profiled targets. Lab on a Chip, 15(17), 3481-3494.【IF: 6.91】

[15] Zhao, S., Zhao, H., Zhang, X., Li, Y., & Du, Y. (2013). Off-the-shelf microsponge arrays for facile and efficient construction of miniaturized 3D cellular

microenvironments for versatile cell-based assays. Lab on a Chip, 13(12), 2350-2358.【IF: 6.91】

[16] Liu, W., Li, Y., Zeng, Y., Zhang, X., Wang, J., Xie, L., ... & Du, Y. (2014). Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery.

Acta biomaterialia, 10(5), 1864-1875.【IF: 6.64】

[17] Zeng, Y., Zhu, L., Han, Q., Liu, W., Mao, X., Li, Y., ... & Du, Y. (2015). Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta

biomaterialia, 25, 291-303.【IF: 6.64】

[18] Wang, B., Qin, P., Zhao, H., Xia, T., Wang, J., Liu, L., ... & Du, Y. (2016). Substrate stiffness orchestrates epithelial cellular heterogeneity with controlled proliferative

pattern via E-cadherin/β-catenin mechanotransduction. Acta biomaterialia, 41, 169-180.【IF: 6.64】

[19] Jiang, S., Li, S. C., Huang, C., Chan, B. P., & Du, Y. (2018). Physical Properties of Implanted Porous Bioscaffolds Regulate Skin Repair: Focusing on Mechanical and

Structural Features. Advanced healthcare materials, 7(6), 1700894.【IF: 6.27】

[20] Fan, X., Zhu, L., Wang, K., Wang, B., Wu, Y., Xie, W., ... & Du, Y. (2017). Stiffness‐Controlled Thermoresponsive Hydrogels for Cell Harvesting with Sustained Mechanical

Memory. Advanced healthcare materials, 6(5), 1601152.【IF: 6.27】

[21] Zhao, S., Shen, Z., Wang, J., Li, X., Zeng, Y., Wang, B., ... & Du, Y. (2014). Glycerol-mediated nanostructure modification leading to improved transparency of porous

polymeric scaffolds for high performance 3D cell imaging. Biomacromolecules, 15(7), 2521-2531.【IF:5.75】

[22] Zhang, F., Wang, L., Li, Y., Liu, W., Duan, F., Huang, R., ... & Na, J. (2017). Optimizing mesoderm progenitor selection and three-dimensional microniche culture allows

highly efficient endothelial differentiation and ischemic tissue repair from human pluripotent stem cells. Stem cell research & therapy, 8(1), 6.【IF: 4.963】